add1

Tuesday, October 11, 2016

MCS 013 Discrete Mathematics




                                   MCS-013
                          Discrete Mathematics
1. (a) What is proposition? Explain whether, x-y >5 is a proposition or not.




Definition

A proposition is that part of the meaning of a clause or sentence that is constant, despite changes in such things as the voice or illocutionary force of the clause.

A proposition may be related to other units of its kind through interpropositional relations, such as temporal relations and logical relations.

Discussion

The meaning of the term proposition is extended by some analysts to include the meaning content of units within the clause.

Example:
The tall, stately building fell is said to express propositions corresponding to the following:
  • "The building is tall."
  • "The building is stately."
  • "The building fell."

Examples (English)

·  The common content of each of the the following utterances is a proposition:
    • Alec ate the banana.
    • The banana was eaten by Alec.
    • Did Alec eat the banana?
    • Alec, eat the banana.
All these utterances may be analyzed as consisting of a predicate naming an event or state and one or more arguments naming referents that participate in that event or state.
    • The activity is eat.
    • The agent is Alec.
    • The patient is a banana.

SOLUTION
Yes,  x-y >5 is a proposition
Because                 x-y > 5
Always  true for  x={6,7,8,9,10,……………………} or y ={0,1,2,3,4,…………….. }
And 
Always false for  {  x < y  , x = y or  y+5=x }
 









(b) Make truth table for followings.

(i) p→ (~q ⋁ ~ r) ⋀ (~p ⋁ r)



      p
     q
      r
~p or ~q
p -> (~p or ~q)
~p or r
p→ (~q ~ r) (~p r)
FALSE
FALSE
FALSE
TRUE
FALSE
TRUE
FALSE

FALSE
FALSE
TRUE
TRUE
FALSE
TRUE
FALSE

FALSE
TRUE
FALSE
TRUE
FALSE
TRUE
FALSE

FALSE
TRUE
TRUE
TRUE
FALSE
TRUE
FALSE

TRUE
FALSE
FALSE
TRUE
TRUE
FALSE
FALSE

TRUE
FALSE
TRUE
TRUE
TRUE
TRUE
TRUE

TRUE
TRUE
FALSE
FALSE
TRUE
FALSE
FALSE

TRUE
TRUE
TRUE
FALSE
TRUE
TRUE
TRUE








(ii) p→ (r ⋁ q) ⋀ (~p ⋀ ~q)



      p
      q
      r
    r or q
p -> (r or q)
(~p and ~q)
p→ (r q) (~p ~q)
FALSE
FALSE
FALSE
FALSE
TRUE
TRUE
TRUE
FALSE
FALSE
TRUE
TRUE
FALSE
TRUE
FALSE
FALSE
TRUE
FALSE
TRUE
FALSE
FALSE
FALSE
FALSE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE
TRUE
FALSE
FALSE
FALSE
TRUE
FALSE
FALSE
TRUE
FALSE
TRUE
TRUE
TRUE
FALSE
FALSE
TRUE
TRUE
FALSE
TRUE
TRUE
FALSE
FALSE
TRUE
TRUE
TRUE
TRUE
TRUE
FALSE
FALSE



(c) Draw a Venn diagram to represent followings:


 
 (i)  (A U B)  U ( B   ∩  C )


(ii)  (A U B)     ( C   ~  A )




(d) Give geometric representation for followings:


(i) R x { 4}; where R is a natural number





(ii) {2, 2) x ( 2, -4)




{(2,2),(2,2),(2,-4),(2,-4)}
 

1 comment: