MCS-013
Discrete Mathematics
1. (a) What is proposition? Explain whether, x-y >5 is a proposition or not.
Definition
|
|
|
A proposition is that part of the
meaning of a clause or sentence that is constant, despite changes in such
things as the voice or illocutionary force of the clause.
|
|
A proposition may be related to
other units of its kind through interpropositional relations, such as temporal
relations and logical relations.
|
Discussion
|
|||
|
The meaning of the term proposition
is extended by some analysts to include the meaning content of units within
the clause.
|
||
|
|
Examples (English)
|
|
|
· The common content
of each of the the following utterances is a proposition:
All
these utterances may be analyzed as consisting of a predicate naming an event
or state and one or more arguments naming referents that participate in that
event or state.
|
SOLUTION
Yes, x-y
>5 is a proposition
Because x-y > 5
Always true
for x={6,7,8,9,10,……………………} or y
={0,1,2,3,4,…………….. }
And
Always false for
{ x < y , x = y or
y+5=x }
(b) Make truth table for followings.
(i) p→ (~q ⋁ ~ r) ⋀ (~p ⋁ r)
p
|
q
|
r
|
~p or ~q
|
p -> (~p or ~q)
|
~p or r
|
p→ (~q ⋁ ~ r) ⋀ (~p ⋁ r)
|
|
FALSE
|
FALSE
|
FALSE
|
TRUE
|
FALSE
|
TRUE
|
FALSE
|
|
FALSE
|
FALSE
|
TRUE
|
TRUE
|
FALSE
|
TRUE
|
FALSE
|
|
FALSE
|
TRUE
|
FALSE
|
TRUE
|
FALSE
|
TRUE
|
FALSE
|
|
FALSE
|
TRUE
|
TRUE
|
TRUE
|
FALSE
|
TRUE
|
FALSE
|
|
TRUE
|
FALSE
|
FALSE
|
TRUE
|
TRUE
|
FALSE
|
FALSE
|
|
TRUE
|
FALSE
|
TRUE
|
TRUE
|
TRUE
|
TRUE
|
TRUE
|
|
TRUE
|
TRUE
|
FALSE
|
FALSE
|
TRUE
|
FALSE
|
FALSE
|
|
TRUE
|
TRUE
|
TRUE
|
FALSE
|
TRUE
|
TRUE
|
TRUE
|
(ii) p→ (r ⋁ q) ⋀ (~p ⋀ ~q)
p
|
q
|
r
|
r or q
|
p -> (r or q)
|
(~p and ~q)
|
p→ (r ⋁ q) ⋀ (~p ⋀ ~q)
|
FALSE
|
FALSE
|
FALSE
|
FALSE
|
TRUE
|
TRUE
|
TRUE
|
FALSE
|
FALSE
|
TRUE
|
TRUE
|
FALSE
|
TRUE
|
FALSE
|
FALSE
|
TRUE
|
FALSE
|
TRUE
|
FALSE
|
FALSE
|
FALSE
|
FALSE
|
TRUE
|
TRUE
|
TRUE
|
FALSE
|
FALSE
|
FALSE
|
TRUE
|
FALSE
|
FALSE
|
FALSE
|
TRUE
|
FALSE
|
FALSE
|
TRUE
|
FALSE
|
TRUE
|
TRUE
|
TRUE
|
FALSE
|
FALSE
|
TRUE
|
TRUE
|
FALSE
|
TRUE
|
TRUE
|
FALSE
|
FALSE
|
TRUE
|
TRUE
|
TRUE
|
TRUE
|
TRUE
|
FALSE
|
FALSE
|
(c) Draw a Venn diagram to represent followings:
(i) (A U B) U ( B ∩ C )
(ii) (A U B) ∩ ( C ~ A )
(d) Give geometric representation for followings:
(i) R x { 4}; where R is a natural number
(ii) {2, 2) x ( 2, -4)
{(2,2),(2,2),(2,-4),(2,-4)}
thnx sir
ReplyDelete